4 research outputs found

    Evaluating the impact of an intervention to increase uptake of modern contraceptives among adolescent girls (15-19 years) in Nigeria, Ethiopia and Tanzania: the Adolescents 360 quasi-experimental study protocol.

    Get PDF
    INTRODUCTION: Nigeria, Ethiopia and Tanzania have some of the highest teenage pregnancy rates and lowest rates of modern contraceptive use among adolescents. The transdisciplinary Adolescents 360 (A360) initiative being rolled out across these three countries uses human-centred design to create context-specific multicomponent interventions with the aim of increasing voluntary modern contraceptive use among girls aged 15-19 years. METHODS: The primary objective of the outcome evaluation is to assess the impact of A360 on the modern contraceptive prevalence rate (mCPR) among sexually active girls aged 15-19 years. A360 targets different subpopulations of adolescent girls in the three countries. In Northern Nigeria and Ethiopia, the study population is married girls aged 15-19 years. In Southern Nigeria, the study population is unmarried girls aged 15-19 years. In Tanzania, both married and unmarried girls aged 15-19 years will be included in the study. In all settings, we will use a prepopulation and postpopulation-based cross-sectional survey design. In Nigeria, the study design will also include a comparison group. A one-stage sampling design will be used in Nigeria and Ethiopia. A two-stage sampling design will be used in Tanzania. Questionnaires will be administered face-to-face by female interviewers aged between 18 and 26 years. Study outcomes will be assessed before the start of A360 implementation in late 2017 and approximately 24 months after implementation in late 2019. ETHICS AND DISSEMINATION: Findings of this study will be widely disseminated through workshops, conference presentations, reports, briefings, factsheets and academic publications

    Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant

    Get PDF
    SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination

    SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2

    Get PDF
    Abstract Background Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September–27 September 2021) and 15 (19 October–5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month. Results We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8–23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Conclusions As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals. </jats:sec
    corecore